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Abstract
As the memory demand continues to surge, the limitations
of DRAM scalability have spurred the development of var-
ious new memory technologies in today’s data centers. In
order to harness the benefits of the heterogeneous memory
architecture, tiering has become a widely adopted memory
management paradigm. The effectiveness of a tiered mem-
ory management system primarily relies on its ability to
accurately identify frequently accessed (“hot”) pages and
infrequently accessed (“cold”) pages, and efficiently relo-
cate them between tiers. However, existing systems rely on
coarse-grained frequency measurement schemes that do not
align with the performance characteristics of modern mem-
ory devices and memory-intensive applications. Addition-
ally, these systems often incorporate rigid rules or manually
configured parameters for page classification, resulting in
inflexible migration strategies.
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This paper introduces Chrono, a novel OS-level tiering
system that offers precise characterization of page access fre-
quencies in different tiers and enables efficient migration of
hot and cold pages. By leveraging timers instead of counters,
Chrono achieves meticulous measurement of hot page access
frequency with low overhead. This approach allows Chrono
to automatically tune its page classification parameters, lead-
ing to flexible migration strategies that adapt to various
workloads. Furthermore, Chrono includes a dynamic cold
page identification subsystem, which balances the utilization
and availability of tiered memory. We have implemented and
evaluated Chrono on existing tiered memory platforms, and
experimental results demonstrate that Chrono outperforms
state-of-the-art tiering systems by a large margin.
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1 Introduction
In light of the rise of memory-intensive applications, such
as in-memory database services and foundational model
training [13, 26, 36, 50, 70, 73], there has been a notable
surge in memory demands within contemporary data cen-
ters. However, the scalability of DRAM has proven challeng-
ing in meeting the escalating requirements [20, 43, 47, 56].
To address this issue, researchers have recently proposed
various alternative technologies. Some focus on new mem-
ory devices [12, 25, 31, 80], such as production-grade non-
volatile memory (NVM), which provides substantial gains
in storage capacity and energy efficiency [17, 19, 21, 34]
compared to DRAM. Others focus on new interconnection
technologies [7, 28, 74, 77], such as Compute Express Link
(CXL), which provides low-latency links for heterogeneous
memory and drives the creation of next-generation memory
pools [3, 22, 43, 76]. The advancement in hardware brings
forth fresh opportunities for OS researchers, with require-
ments to exploiting the full potential of heterogeneous mem-
ory architectures.

The novel mainmemory technologies, including NVM and
CXLmemory, exhibit common characteristics [74, 75, 80, 82],
which are byte-addressable and provide larger capacity with
higher latency (150-270 ns) in comparison to DRAM (50-90
ns). In this paper, we refer to DRAM as “fast memory” and the
newly introduced memory devices as “slow memory”. The
distinctive properties of slow memory establish it as a new
tier situated between conventional SSD-based storage and
the fast memory. In practice, it provides directly accessible
physical memory to the kernel alongside the fast memory,
without introducing architectural overhead such as memory
mapping and swapping. With the heterogeneous memory ar-
chitecture,memory tiering [49, 63, 78] has become a widely
adopted paradigm as it exposes the full capacity of different
tiers while maintaining transparency to applications.

To fully exploit the performance of fast and slow memory
tiers, the OS needs to measure the hotness of pages and
effectively migrate hot/cold pages between different tiers [1,
18, 33, 38, 61, 67]. Recent researches [27, 35, 39, 48, 49, 64, 72]
have been dedicated to optimizing the hotness measurement
methods.
However, existing solutions fail to incorporate both fine-

grained frequency and high spatial resolution, leading to
insufficient page classification ability for today’s high per-
formance memory tiering architecture. We have analyzed
three common types of methods that utilize software page
fault, hardware access bit, and hardware event sampling mech-
anisms to measure page hotness. Both software page faults
and hardware access bits only provide coarse-grained access
frequency statistics, whereas hardware event sampling, de-
spite being more precise, is constrained by limited sampling
capacity when dealing with fine-grained page sizes. Their
inflexible migration criteria and manually tuned profiling

schemes also hinder their capability to dynamically respond
to evolving workload patterns.

Our analysis reveals the following insight: It is challenging
for the counter-based measurement schemes to satisfy the re-
quirement of fine-grained access frequency characterization,
as their effective statistical scales rely on the measurement
intensity, which is directly related to the system overhead.
Fortunately, we discover that utilizing timers to record the idle
time of pages offers meticulous measurement of the access
frequency, decoupling frequency resolution from measure-
ment rate, and enables adaptive classification criteria.
We propose Chrono, a novel tiered memory system that

provides fine-grained hotness measurement and flexible page
migration with low overhead. Chrono leverages an innova-
tive Captured Idle Time (CIT) method to accurately es-
timate page access frequency and provides meticulous fre-
quency statistics. With CIT, Chrono significantly improves
the hot page identification precision, while adding negligi-
ble overhead compared to the vanilla non-uniform mem-
ory access (NUMA) management in Linux. The fine-grained
measurement scheme motivates us to design conditional
promotion schemes, including candidate filtering and rate-
limited migration, to identify hot pages stably and efficiently.
Meanwhile, Chrono includes a proactive cold-page demotion
scheme that balances the memory utilization and availability,
with a monitoring method to avoid redundant page migra-
tions and alleviate extra bandwidth consumption.

To exploit Chrono’s flexibility in handling various applica-
tion memory access patterns, we introduce automatic tuning
schemes to adjust the critical system parameters at run-time.
We design a Dynamic CIT Statistic Collection (DCSC)
scheme that accurately depicts the distribution of page hot-
ness across the fast and slow tiers. It enables Chrono to cal-
culate and adjust its classification threshold and migration
rate adaptively, thereby achieving transparent and flexible
performance optimization.

In summary, we make the following contributions:

• We conduct a thorough analysis of existing tieredmem-
ory management systems, focusing on hotness mea-
surement and migration criteria. It reveals that ex-
isting approaches lack the capability to discern fine-
grained access frequency and employ inflexible migra-
tion strategies.

• We introduce Chrono, a novel tiered memory system
that incorporates a meticulous hotness measurement
scheme. It takes a timer-based method to precisely cap-
ture memory access frequency, with a hot page candi-
date filtering scheme. We provide theoretical analysis
to validate the stability and efficiency of our method.

• We design adaptive parameter tuning methods based
on a run-time page hotness distribution statistics sub-
system, allowing Chrono to adjust its migration param-
eters transparently and adaptively. We further design
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dynamic cold page identification schemes that opti-
mize the fast-tier memory availability.

• We implement Chrono based on the Linux kernel and
make it open-source. With thorough evaluation on
various memory-intensive benchmarks, we show that
Chrono outperforms the state-of-the-art tiered mem-
ory systems by a large margin.

2 Background and Motivation
In this section, we first review the existing NUMA-balancing
scheme of Linux. Second, we show that memory-intensive
workloads impose significant memory pressure on the slow
tier, emphasizing the importance of accurate page hotness
measurement. Third, we analyze recent researchworks focus-
ing on hotness measurement and show their limitations on
measurement granularity, with further experimental results
demonstrating their deficiencies in hot page identification.

2.1 NUMA migration scheme
Current researches and industry solutions tend to reuse the
NUMA management system to organize the new memory
tiers [3, 43, 49], prioritizing system implementation simplic-
ity and application transparency. In a multi-socket NUMA-
aware system, the auto NUMA-balancing scheme [60] man-
ages the cross-NUMA page migration procedure. It is de-
signed to optimize the page placement according to the CPU
sockets’ memory localization. By periodically scanning the
address space of a process and marking a range of pages as
inaccessible, using the PROT_NONE flag, a page fault will occur
when the process accesses a scanned page and the kernel in-
tercepts it. The kernel then verifies the tag of the faulted page
indicating which CPU performed the last access by checking
the corresponding bits in the struct page. A migration oc-
curs if the memory node of the page does not match the CPU
node that triggered the fault. The auto NUMA-balancing
scheme is expected to improve the performance when the
applications cannot guarantee local memory allocation.
However, the original NUMA-balancing policy is unsuit-

able for page migration in tiered memory architecture. Since
the newly-added slow tier appears as a CPU-less memory
node, any memory access occurring in the poisoned address
range will lead to page migration, which is equivalent to ap-
plying a most recently used (MRU) algorithm to identify hot
pages. This MRU approach fails to capture access frequency,
resulting in the misidentification of hot pages in the slow tier,
as it may promote candidates that have remained idle for a
considerable time before their most recent access. Therefore,
it is imperative to implement a more precise hotness mea-
surement mechanism that integrates frequency statistics to
enhance the page migration accuracy.
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Figure 1. Per-page memory access frequency, with DRAM,
NVM contribution, and top-10% hot region stats of NVM.

2.2 Memory pressure on fast-slow tiers
As fast-slow memory tiering offers increased capacity and
bandwidth, the substantial memory traffic highlights the
inadequacy of conventional coarse-grained techniques in
accurately capturing page access frequency. Coarse-grained
frequency measurement methods lead to inaccurate hot page
identification, which will result in overall performance degra-
dation. We conduct a quantitative analysis to demonstrate
that only a precise hotness measurement method can distin-
guish hot pages effectively.
We run Pmbench [86], Graph500 [55], Memcached [53]

and Redis [66] on a DRAM-NVM tiered system (see details
in Section 5). We then use the PMU tool [6] (with processor
event-based sampling (PEBS) [29] on x86) to capture memory
accesses that target different memory regions. We calculate
the average per-page access frequency for DRAM and NVM,
respectively, dividing the number of memory accesses by the
total number of pages. As shown in Figure 1, DRAM exhibits
denser access patterns compared to NVM, due to the inher-
ent differences in hardware characteristics Nevertheless, we
observe that each NVM page also exhibits 20-40 accesses per
minute on average, emphasizing the necessity for highly ac-
curate hotness measurement strategies to enhance hot page
selection in tiered memory systems.

Specifically, our analysis of the instruction samples reveals
that the top 10% hot NVM pages exhibit access frequencies
up to 5.5𝑡𝑖𝑚𝑒𝑠 higher than the average access rate across
the entire NVM region. As a result, an effective hotness
measurement method, which is capable of handling access
frequencies from tens to hundreds of accesses per minute, is
essential for accurately distinguishing between hot, warm,
and cold pages in the memory space. However, we analyze
and find that existing solutions fail in achieving the precision
needed for accurate hotness measurement.

2.3 Characteristics of existing solutions
We analyze the recent memory tiering research works, in-
cluding Auto-Tiering [35], Multi-Clock [48], TPP [49], and
Memtis [39], and summarize their characteristics in Table 1.
As an overview, the majority of existing tiering systems
adopt counter-based frequency measurement methods to
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Solution Type Migration Criterion Effective Frequency Scale Default Page Size
Auto-Tiering System-wide Page-fault counters 0∼1 access/min Base page
Multi-Clock System-wide Multi-level LRU lists 0∼1 access/min Base page
Telescope System-wide Tree-structured PTE bits 0∼5 access/sec Base page

TPP System-wide Page-fault + LRU lists 0∼2 access/min Base page
Memtis Process level PEBS stats + Ratio config 0∼10 access/sec Huge page
FlexMem Process level PEBS stats + Page fault 0∼10 access/sec Huge page

Chrono [Ours] System-wide Dynamic CIT stats 0∼1000 access/sec Base page
Table 1. Characteristics of the design and principles in recent tiered memory research works.

capture hotness, which tightly couple the effective frequency
scale with the measurement intensity and lead to coarse-
grained frequency statistics.

Software page fault. Many existing solutions utilize the
software page fault mechanism to record memory access at
the kernel level [1, 35, 49]. Auto-Tiering utilizes the software
page faults, recording memory access history within the
recent eight page-scanning periods as an 8-bit LAP (least
accessed page) vector, to distinguish hot/cold pages [35]. TPP
combines the page fault criterion provided by the NUMA-
balancing scheme with the access recency criterion provided
by the LRU mechanism, identifying hot pages by synthetic
information [49], which is considered a software-hardware
cooperated method.

However, these solutions fail to provide fine-grained page
access frequency measurement resolution. The kernel per-
forms page scan operations cyclically on the virtual address
space of each process, where the default scan interval is set
to one minute. Thus, existing solutions are unable to meet
the precision required for effective hotness measurement.
For instance, a page listed in the level-8 LAP only represents
at least eight accesses over the last eight minutes. Adjusting
the number of lists does not lead to improved precision in
frequency measurement. While shortening the scanning pe-
riod could theoretically refine frequency measurements, it
also leads to substantial page-fault handling overhead.
Hardware access bit. Other researchers propose to uti-

lize conventional processor-managed bits and construct re-
fined LRU lists to measure page hotness [18, 48, 57]. Lever-
aging the reference/dirty bits in page table entries (PTE),
Multi-Clock optimizes the Linux page reclamation algorithm,
named clock, by constructing multi-level LRU lists and se-
lecting migration candidates from the top/bottom lists [48].
TMTS also adopts this mechanism to monitor page access
and builds a hardware-based timely hot page selection algo-
rithm [18]. Telescope, on the other hand, takes advantage of
the tree-structured PTEs to enable a region-based profiling
that is efficient for TB-level memory systems [57].
Nonetheless, they also fail to provide fine-grained hot-

ness measurement. Hardware bits provide only “accessed or
not” information over a fixed period, hindering the ability
to capture nuanced access patterns. The reset intervals are

determined by memory shortages and the size of the LRU list,
often lasting from minutes to hours in today’s data centers.
While effective at identifying idle pages, the coarse-grained
measurement fails to provide the precise access frequency
statistics that are necessary for accurately tracking hot pages.
The tree-structured PTE bits used in Telescope, although pro-
viding a scalable solution for large memory systems, also has
a fixed profiling window (200ms) that limits its frequency
resolution at each level of PTE tree.
PEBS counter. Recently, researchers have proposed to

utilize the PEBS scheme to collect access frequency statis-
tics [39, 64, 84]. HeMem [64] utilizes PEBS counters to rep-
resent the memory access frequency and classify hot and
cold pages based on fixed thresholds. Memtis [39] further
proposes a global histogram-based statistic mechanism with
a fast-slow memory ratio configuration to adjust its classi-
fication criterion. FlexMem [84] integrates the PEBS-based
method with the software page fault method to provide a
synthetic classification criterion, which enhances Memtis
with timely migration decisions.

Unfortunately, the PEBS-based tiering solutions aremainly
optimized for huge-page (2MB page size) systems and face
considerable obstacles when applied to base-page (4KB page
size) systems. The root cause is that micro-operations in
the sampling mechanism introduce non-negligible CPU and
memory overhead to the users, across different hardware
platforms [4, 9, 69]. This type of solutions adopt the sam-
pling rate lower than 100000 samples per second, where the
Linux kernel forces the upper-bound and system designers
further restrict the sampling rate for performance considera-
tion. Given the fact that a stable PEBS-based classification
algorithm needs significant counter values (from 25 to 215
in HeMem and Memtis) for each hot page within a cooling
period (usually several seconds), the limited sampling rate
prevents them from tracing large amount of pages. Con-
sequently, these approaches face significant limitations in
achieving fine-grained hotness identification in base-page
systems, due to inherent hardware constraints in balancing
address profiling resolution and system overhead.

Moreover, running traditional base-page oriented applica-
tions on huge-page based systems inevitably leads to mem-
ory bloat [54], which not only wastes memory space [37],
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Figure 2. Characteristics of (a) hot page identification effi-
ciency in existing solutions, and (b) PEBS bin distribution
under different page granularity in Memtis.

but also degrades the classification accuracy due to hotness
fragmentation [8, 42] that enlarges the identified hot region
size. Memtis is able to reduce memory bloat ratio moderately
by page splitting operations, which is, however, another per-
formance bottleneck for tiered memory systems.

2.4 Limitations in hot page identification
To evaluate the effectiveness of hotness identification meth-
ods in existing works, we construct a memory-intensive
benchmark with a skewed access pattern using the Pmbench
tool. With a Gaussian access pattern and a stride step of
2, we run a 32-thread Pmbench workload on a platform
with 256GB memory, with 25% of the memory composed
of DRAM and the remaining as NVM. We stat the run-time
memory access frequencies of the different memory nodes
using the PMU tool and focus on two metrics. The first is the
F1-score. Taking accesses that fall into the center 25% of the
address space (hot region defined by the normal distribution
in workload configuration) as actual positives, and accesses
to DRAM as predicted positives since all the identified hot
pages are promoted to the DRAM node, we calculate the
harmonic means of precision and recall as F1-score. The sec-
ond is the page promotion ratio (PPR), which is calculated
as the ratio of the number of pages promoted to DRAM to
the total number of accessed NVM pages. Results are shown
in Figure 2a.

An ideal hotness identification method should have a high
F1-score and a low PPR, which means that it can accurately
identify hot pages and avoid unnecessary page migrations.
As the results show, the existing page-fault based methods
and hardware-bit based methods exhibit lower precision due
to unnecessary migrations, while the PEBS-based methods
(such as Memtis) provide lower recall due to hotness frag-
mentation caused by their use of huge pages, and the fact
that our benchmark is base-page oriented.
We further analyze the limited generalizability of PEBS

for the base-page system by counting the number of pages
that fall into different hotness levels under PEBS-based sta-
tistical schemes and show them in Figure 2b. We run the
same workload and collect the counter values in different

bins representing various hotness levels, and repeat it under
different page granularity settings. We observe a significant
reduction in counter values within the base-page system,
which leads to an unstable classification of hot and cold
pages. Specifically, in the huge-page system over 80% PEBS
counters fall in the 4th or higher bin (representing access
counter value ≥ 8), while in the base-page system this ratio
is reduced to under 7%. Statistically, a smaller PEBS counter
value is related to a higher coefficient of variation, which
indicates the instability of the PEBS-based hotness classifica-
tion in the base-page system. It shows that the vast disparity
between moderate sampling rate and large page count in the
base-page system hinders PEBS from delivering meaningful
statistical information for accurate hotness identification.

3 Design
In this section, we present Chrono, a novel OS-level tiered
memorymanagement system. Chrono employs a timer-based
hotness measurement scheme that accurately tracks page
access frequency with minimal overhead, enabling efficient
system-wide hot and cold page identification while support-
ing flexible page migration strategies. Built on the mainline
Linux kernel, Chrono employs the NUMA abstraction to
architecturally separate fast and slow tiers. As shown in
Figure 3, Chrono integrates three distinct components that
collectively streamline page hotness tracking and migration
within the tiering framework:

• Meticulous Page Promotion. We propose a timer-
based page hotness measurement method based on
page idle time capturing, facilitating accurate hot page
identification for promotion with minimal overhead.

• Adaptive Parameter Tuning. We design two param-
eter tuning methods to manage page classification and
migration within Chrono, with the first focusing on
low overhead and the second enabling full automation
via an integrated hotness statistic mechanism.

• Proactive Page Demotion. We introduce a newmem-
ory watermark to trigger page demotion proactively,
achieving a balance between memory availability and
hot page placement. We also propose a page thrashing
monitor to mitigate unnecessary migrations.

3.1 Meticulous Page Promotion
The efficiency of the page promotion hinges on the accurate
measurement of page hotness and the effective identification
of hot pages for migration. Our meticulous approach utilizes
Captured Idle Time (CIT), which is the time gap between
page scan and page fault, as a reliable metric that negatively
correlates with access frequency. This allows us to estimate
page hotness with minimal overhead while employing light-
weight classification methods. To ensure robust hot page
identification, we design a conditional promotion scheme
with high stability and efficiency.
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3.1.1 Timer-based hotness measurement. To measure
page hotness effectively, we propose a Ticking-scan scheme
that captures precise timestamps of page unmapping events
during periodic scans. By combining them with consecutive
page-fault timestamps, Chrono calculate CIT values for each
page efficiently while maintaining bounded overhead.

Specifically, Ticking-scan employs a timer-based approach
to monitor page hotness by periodically scanning the virtual
memory space of active processes. Each scan marks a range
of pages as inaccessible (by setting PTE bits to PROT_NONE),
and records the scan timestamp for slow-tier pages. When an
unmapped page is accessed, a page fault triggers Chrono to
log the corresponding page-fault timestamp. CIT is then cal-
culated as the difference between the page-fault timestamp
and the prior scan timestamp. This metric is statistically pro-
portional to the interval between consecutive accesses to the
page, providing an accurate reflection of access frequency.
Our experimental results (Subsection 5.1, Figure 10a) also
support that a lower CIT correlates with a higher access
frequency and vice versa.
By decoupling measurement resolution from the scan

period, CIT provides an effective mechanism for captur-
ing a wide range of access frequencies. Using millisecond-
based timers, Chrono achieves a measurable frequency upper
bound of 1000 accesses per second, making Ticking-scan par-
ticularly suited for fine-grained hot page identification in
memory-intensive environments. CIT also allows Chrono to
precisely identify hot pages with minimal system overhead,
consisting of only timestamp recording and basic arithmetic
calculations. In addition, the metadata required for CIT oc-
cupies only 4 bytes per page, imposes a negligible space
cost, ensuring scalability in systems with very large memory
capacities.

Chrono classifies hot and cold pages based on their corre-
sponding CIT values and migrates them across memory tiers.
A system-wide CIT threshold is employed as the classifica-
tion boundary, ensuring optimal tier assignment. To adapt to

various workloads, Chrono incorporates adaptive parameter
tuning mechanisms (detailed in Subsection 3.2) that dynami-
cally adjust the threshold in response to workload changes,
enabling adaptive and responsive memory management.

3.1.2 Conditional page promotion. Despite the high ef-
ficiency of CIT-based hot page identification, its accuracy can
be compromised by the inherent randomness in scan timings
and page access patterns, where a single-round CIT-based
classification can occasionally result in unstable promotions.
Additionally, a fixed CIT threshold does not responds effec-
tively to various workloads. To prevent unnecessary migra-
tions, we introduce a candidate filtering scheme to refine
the identification process by evaluating multiple CIT rounds,
thus reducing the likelihood of premature promotions. We
also design a rate-limited promotion queue, which controls
the frequency of page promotions, preventing excessive mi-
grations and minimizing system overhead.
As illustrated in Figure 4, the candidate filtering proce-

dure begins by logging the CIT values of all accessed pages
within a Ticking-scan range. Pages with CIT values below
the threshold are selected as candidates and stored in an
XArray, which allows for low-latency access and minimal
memory consumption. During the next scan cycle, these can-
didates undergo a second evaluation. If a page’s CIT remains
below the threshold, it is marked for promotion and added to
the promotion queue. This two-round filtering mechanism
ensures more accurate promotion decisions, minimizing un-
necessary migrations and reducing system overhead.
Candidate filtering enhances both the stability and effi-

ciency of the promotion process. By using the maximum
value of two CIT samples, it reduces the chance of incor-
rectly classifying pages as hot, lowering the likelihood of
premature promotions (Appendix B.1). Additionally, limiting
the rounds of sampling ensures that the resource footprint
remains low, avoiding the page-fault overhead associated
with excessive sampling. Both our theoretical analysis (Ap-
pendix B.2) and experimental results confirm that two-round
page selection strikes a balance between stability and effi-
ciency without compromising system performance.

Chrono initiates asynchronous page migration for candi-
date pages that are deemed ready for promotion. This in-
volves remapping the pages and copying data across memory
tiers, followed by their removal from the promotion queue.
To prevent excessive migrations, we introduce a promo-
tion rate limit, which regulates the number of migrations
and reduces system overhead. Chrono regularly updates
the rate limit based on a running count of enqueue and
dequeue events, tuning it dynamically to match workload
intensity (Subsection 3.2). Through the adaptive adjustment
of migration rate, Chrono ensures timely page migrations
while maintaining low overhead, achieving a delicate balance
between migration responsiveness and system stability.
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3.2 Adaptive Parameter Tuning
Chrono’s page promotion mechanism relies heavily on the
coordination between the CIT threshold and the promo-
tion rate limit. The CIT threshold serves as a dynamic upper
bound, ensuring that only the hottest pages (those with CIT
values shorter than the threshold) are selected as promo-
tion candidates, while the promotion rate limit modulates the
number of pages promoted during each scan cycle, prevent-
ing overloading of the fast memory. By adaptively controlling
both the quality and quantity of promoted pages, Chrono is
dynamically adjusted to fit various workload patterns.

To optimize its performance at run-time, Chrono incorpo-
rates two parameter tuning methods. The semi-automatic
method adjusts only the CIT threshold dynamically based
on workload characteristics, providing stable performance
with negligible overhead. The fully automatic method, which
serves as Chrono’s default option, utilizes a sophisticated dy-
namic CIT collection and statistical monitoring system. This
approach continuously adapts to shifts in workload memory
access patterns, offering a completely automated solution
that fine-tunes both the CIT threshold and promotion rate
dynamically.

3.2.1 Semi-auto parameter tuning. Chrono’s semi-auto
parameter tuning method provides a user-guided approach
to memory tier management. Users manually configure the
promotion rate limit, while Chrono automatically adjusts the
CIT threshold to align with dynamic memory access patterns.
This approach is particularly suited for users with a deep un-
derstanding of their applications’ memory behavior, striking
a balance between user control and system adaptability.
During each Ticking-scan period, Chrono continuously

monitors the promotion enqueue rate and compares it to
the rate limit, recalibrating the CIT threshold to maintain
balance. If too many pages enter the promotion queue, the
threshold is reduced to slow the promotion rate, and vice
versa. Specifically, the adjustment is determined by a coeffi-
cient 𝑟 , calculated as the ratio between the promotion rate

limit and the promotion enqueue rate. With an adaption step
𝛿 , the threshold 𝑇𝐻 update process is represented as:

𝑟𝑖 =
𝑅𝑎𝑡𝑒 𝐿𝑖𝑚𝑖𝑡 [𝑖]

𝐸𝑛𝑞𝑢𝑒𝑢𝑒 𝑅𝑎𝑡𝑒 [𝑖] , 𝑇𝐻𝑖+1 = (1 − 𝛿 + 𝛿 · 𝑟𝑖 )𝑇𝐻𝑖 .

Guided by the adjustment coefficient 𝑟𝑖 , Chrono ensures
that the enqueue rate of promotion queue converges to the
rate limit, without overwhelming the promotion queue or
underutilizing available memory resources.
Chrono’s semi-auto tuning method strikes a balance be-

tween simplicity and precision by using only two counters
to dynamically decide the CIT threshold. A well-balanced
threshold ensures that hot pages are promoted with optimal
accuracy and promotion rate. A short CIT threshold yields
too few promotion-ready pages, resulting in prolonged ad-
justments, while a long threshold can cause overflowwith ex-
cessive hot page promotions. By averaging the enqueue rate
within each Ticking-scan period, Chrono ensures smooth
and predictable adjustments with minimal system overhead.

3.2.2 Statistics-based parameter tuning. The semi-auto
parameter tuning offers a lightweight yet effective way to
classfy hot pages by automatically fine-tuning the CIT thresh-
old. While this method provides a degree of flexibility, its
reliance on user-provided rate limits may pose challenges for
workloads with unfamiliar memory access behaviors. More-
over, due to the periodical and gradual nature of adjustments,
the method may exhibit delayed responsiveness to rapidly
changing memory demands.

To resolve these challenges, Chrono introduces a statistic-
based fully automatic parameter tuning method that is lever-
aging a Dynamic CIT Statistic Collection (DCSC) ap-
proach to adaptively adjust both the CIT threshold value
and promotion rate limit. DCSC periodically performs the
Ticking-Scan procedure to sample a randomly selected small
memory portion from different tiers, generating heat maps
that reflects the overall CIT distributions of each tier. Chrono
then compares the heat maps of different memory tiers to
determine the misplacement ratio and control the migration
rate, enabling a transparent and adaptive page management
system without manual configuration.

TheDCSC scheme is depicted in Figure 5. To begin, Chrono
randomly selects a small portion (𝑃%) of the virtual memory
space allocated to the process, designating these pages as
victim pages. These pages are marked as inaccessible using
a special flag (PG_probed) to differentiate them from those
subjected to a regular Ticking-scan. Subsequently, the CIT
values of the probed pages are gathered using a two-round
CIT generation mechanism, allowing for a global standard
for both the statistics and hot page identification schemes.
The overall distribution of page hotness is represented in a
heat map organized into 𝐵 buckets corresponding to differ-
ent frequency ranges, facilitating for efficient detection of
overlapping hotness levels. For each memory tier, a statistic
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Figure 5. Dynamic CIT statistic collection scheme.

table is created that contains the process PID, timestamp, and
a CIT range counter array. As processes update their entries,
Chrono dynamically aggregates and updates the heat maps
for each tier, leading to a transparent and real-time memory
hotness capturing system.

Chrono leverages heat maps to track page hotness across
memory tiers, dynamically identifying overlaps and adjust-
ing migration policies to optimize efficiencies. By comparing
the hot pages in the slow-tier with the cold pages in the fast-
tier, Chrono identifies overlaps on the same hotness levels in
different tiers. The number of overlapping pages is used to
calculate the misplacement ratio, which is then multiplied by
the memory consumption and divided by the Ticking-scan
period to determine the proper promotion rate limit. Mean-
while, the CIT threshold is dynamically recalibrated based
on the overlap point, enabling Chrono to continuously fine-
tune its page classification criterion in response to dynamic
workload patterns.

The statistical scan procedure operates independently
from the Ticking-scan, employing a randomized sampling or-
der to facilitate rapid parameter tuning. While Ticking-scan
sequentially scans the entire address space, the statistical
scan selectively probes a small memory subset, enabling fre-
quent per-second scans without imposing significant over-
head. Meanwhile, the randomness of the selected memory
pages ensures a statistically accurate representation of mem-
ory access patterns while providing a stable basis for param-
eter adjustments. By leveraging the DCSC approach, Chrono
offers a fully automated memory management solution that
adapts to changing workload patterns without user interven-
tion, ensuring optimized performance and efficiency across
a wide range of applications.

3.3 Proactive Page Demotion
Effective page demotion is essential for Chrono’s goal of
maintaining an optimized and responsive tiered memory sys-
tem. To facilitate timely and effective pagemigration, Chrono

introduces a promotion-aware memory watermark that trig-
gers the demotion of cold pages from the fast tier. Pages in the
fast-tier inactive list are selected based on an LRU algorithm
for demotion to the slow tier. Moreover, Chrono continu-
ously monitors for page thrashing, adjusting its migration
policies dynamically to prevent unnecessary migrations and
optimize memory utilization.

3.3.1 Watermark-based page demotion. To maintain
memory availability of fast-tier memory and avoid promo-
tion delays, Chrono integrates a proactive demotion scheme
triggered by a promotion-aware watermark. We extend the
Linux memory reclamation mechanism by introducing a
promotion-aware watermark (pro), which resides above the
original high watermark, to ensure that sufficient memory
is always available for hot page promotions. When fast-tier
memory availability falls below the high watermark, demo-
tion is triggered to free space until the amount of available
memory reaches the pro watermark. The gap between the
high and pro watermarks is dynamically configured to en-
sure ample space for page promotions, calculated as twice
the default scan interval multiplied by the promotion rate
limit. Demotion candidates are chosen from the inactive list
of the fast-tier memory using an LRU algorithm, providing
a lightweight and scalable approach to managing cold pages,
while ensuring efficient memory reclamation and avoids
unnecessary page thrashing.
Overall, Chrono ensures that fast-tier memory pages are

efficiently managed without the need for disk-based recla-
mation. Instead, DRAM cold pages are proactively demoted
to the slow tier, maintaining the performance of demand
paging by keeping sufficient available fast-tier memory ca-
pacity. Meanwhile, the slow-tier pages could be promoted to
DRAM, and also could be swapped out to disk if necessary. It
also enables Chrono to accommodate user-defined memory
limits (e.g., cgroups memory.limit), while prioritizing the
retention of hot pages in the fast tier. When memory limits
are reached, Chrono initiates slow-tier reclamation to relieve
memory pressure while maintaining the placement for hot
pages, without sacrificing application performance.

3.3.2 Page thrashing monitor. Page thrashing occurs
when recently demoted pages are prematurely promoted
back to the fast tier, leading to redundant page migrations,
unnecessary page faults, and wasted memory bandwidth. To
mitigate this, Chrono incorporates a page thrashing monitor
that tracks the hotness of recently demoted pages.

Chronomarks each recently demoted pagewith a new flag,
demoted, and immediately makes them inaccessible by chang-
ing the corresponding PTE bits to PROT_NONE. The demotion
timestamp is stored as a substitution for its Tiering-scan
timestamp, and the page is re-evaluated under the same pro-
motion criteria as other slow-tier pages. A thrashing event is
recorded if a demoted page is marked as promotion candidate
again within a scan period. By periodically comparing the
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thrashing rate with the overall promotion rate, Chrono dy-
namically adjusts the promotion rate limit. If the thrashing
ratio exceeds a preset threshold (e.g. 20%), Chrono responds
by halving the promotion rate limit for the next scan period,
which effectively mitigates the impact of thrashing without
compromising system responsiveness.

3.4 Huge Page Support
Chrono also supports huge pages, which are commonly used
in memory-intensive applications to reduce TLB misses and
improve memory management efficiency. The Linux kernel
provides a mechanism to allocate different page sizes, includ-
ing 2MB and 1GB huge pages, which can be used in both
fast and slow tiers.

To support huge pages, Chrono extends the candidate fil-
tering mechanism and DCSC approach to handle different
page sizes effectively. Ticking-scan is adapted to measure the
hotness of huge pages by logging the CIT values of each huge
page in the same way of base-page, and using an adjusted
CIT threshold to classify hot and cold items for huge pages.
For example, the CIT threshold for 2MB huge pages is set to
𝑇𝐻2𝑀𝐵 =

𝑇𝐻4𝐾𝐵
512 , and the CIT threshold for 1GB huge pages

is set to 𝑇𝐻1𝐺𝐵 =
𝑇𝐻4𝐾𝐵
512×512 . It ensures that the hotness mea-

surement and promotion mechanism are consistent across
different page sizes. The DCSC approach is also adaptive
to huge pages, where the huge-page related CIT values are
counted into the CIT heat map by eventually distributing
the calculated accesses to the corresponding 4KB pages. For
example, a 2MB huge page falling into the 𝑖−th CIT bucket
will be counted as 512 base pages in the (𝑖 +9)-th CIT bucket
(assuming that adjacent CIT buckets representing 2x access
frequency). This approach ensures that the hotness statistic
mechanism remains fair and consistent across different page
sizes, enabling seamless integration of huge pages into the
timer-based tiering framework.

4 Implementation
We implement Chrono based on the Linux kernel v5.18, with
1.9k SLOC code changes, and have made it publicly avail-
able on GitHub1 and Zenodo2. We add a new numa_tiering
option in sysctl to enable Chrono.

All the configurable parameters in Chrono are summa-
rized in Table 2. For Ticking-scan, we set the default manner
identical to the Linux kernel’s NUMA scan mechanism. The
additional CIT metadata allocated in the extended struct
page structures consumes 0.2% of the physical memory space,
and thus incurs only a modest space overhead. Regarding the
XArray indexing the hot page candidates, we allocate new
slots in the kernel space, which consume less than 32 KB

1https://github.com/SJTU-DDST/chrono-project
2https://doi.org/10.5281/zenodo.14875828

Name Default Description

Scan step 256 MB • Marked page set size
of a Ticking-scan event.

Scan period 60 sec • Period for Ticking-scan
to loop over address space.

P-victim 0.003% • Ratio of pages sampled
in the DCSC scheme.

B-bucket 28 • Number of different
CIT-levels in DCSC stats.

𝛿-step 0.5 • Adaption step for
CIT threshold adjustment.

CIT threshold 1000 ms • Auto-tuned.
Rate limit 100 MBps • Auto-tuned.

Table 2. Summary of the parameter default values in Chrono.

memory on average for each active process across their life-
time as there is a limited number of pages selected as pro-
motion candidates by the DCSC design.
In the DCSC-based tuning schemes, we choose a small

portion 𝑃 of pages to be sampled as the victims, where 0.003%
is corresponding to about 8 MB in our 256 GB platform. The
default victim ratio should be decreased when applied to a
larger memory system, to avoid scanning too many pages in
the statistics collection process. For CIT-level buckets, the
finest CIT level is 1 ms and 𝑖−th bucket contains the CIT
values in the range of [2𝑖−1, 2𝑖 ) millisecond. Setting the finest
granularity as 1 ms is sufficient to hotness representation, as
the CIT values are not used for precise time measurement
but for frequency estimation, and pages with a CIT value
above 227 ms (which indicates at least 37.3 hours untouched)
will not be considered as key points in hot-page selection.We
have also developed procfs controllers that allow system
managers to configure parameters manually as they need.
Details about the impact of these parameters are provided
in the evaluation section.

5 Evaluation
Our evaluation testbed is equipped with an Intel Xeon Gold
6348 CPU running at 2.6 GHz. The fast memory is composed
of four local 16 GB DDR4 DRAMmodules. We configure two
128 GB Intel Optane PM modules in a CPU-less NUMA node
as slow memory, following the community tendency [23]. It
has about 200 ns memory load/store latency, which is also
similar to CXL memory specification [74, 75].
For comparison, we choose the Linux kernel v5.18 with

NUMA-balancing [52] (Linux-NB), Auto-Tiering [35], Multi-
Clock [48], TPP [49], and Memtis [39]. For Auto-Tiering we
use opportunistic and background mode (OPM-BD) to get
the best performance. Memtis running on a base-page sys-
tem performs similar to vanilla Linux, such that we keep
the huge-page options as its suggested setting (“always”).
We use Pmbench [86], Graph500 [55], Memcached [53] and

843

https://github.com/SJTU-DDST/chrono-project
https://doi.org/10.5281/zenodo.14875828


EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenlin et al.

95:5 70:30 30:70 5:95
R/W ratio

0

1

2

3

4
No

rm
al

ize
d 

Th
ro

ug
hp

ut
s Linux-NB

AutoTiering
MultiClock
TPP

Memtis
Chrono

(a) 50 processes, 5 GB working set.

95:5 70:30 30:70 5:95
R/W ratio

0

1

2

3

4

No
rm

al
ize

d 
Th

ro
ug

hp
ut

s Linux-NB
AutoTiering

MultiClock
TPP

Memtis
Chrono

(b) 32 processes, 8 GB working set.
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(c) 32 processes, 4 GB working set.

Figure 6. The pmbench throughput under different concurrency levels and working set sizes.

Redis [66] as benchmarks, and lkp-test [46] tools for light-
weight kernel-level feature characterization.

5.1 Microbenchmark: Pmbench
We use Pmbench [86] to construct memory-intensive work-
loads, profiling the throughput and latency. To elaborate
the cause of performance differences, we analyze the kernel
characteristics at run-time. We also construct a multi-tenant
workload to evaluate the hot/cold identification effective-
ness. Moreover, we track the parameter values during the
benchmark execution time to examine the effectiveness of
our adaptive parameter tuning methods.

5.1.1 Throughput/Latency profiling. We use memory-
intensive workloads with a skewed and sparse access pattern.
With 50 concurrent Pmbench tasks, each having 5 GB pri-
vate working sets, we configure the pattern as normal_ih
and stride as 2, resulting in scattered Gaussian distributed
accesses over the address space.
The throughput results are shown in Figure 6. Chrono

provides higher throughput under various read-write ratios,
outperforming Linux-NB, Auto-Tiering, Multi-Clock, TPP,
and Memtis by 216%, 152%, 92%, 90%, and 102%, respectively.
The absolute throughput of Linux-NB is 71.5 Mop/s, and the
working set includes 62.5M pages for a base-page system,
such that the average frequency is 1.14 access per second.
Auto-Tiering, Multi-Clock, and TPP do not discern such a
high frequency resolution so that they fail to identify the
real hot pages. Memtis suffers from hotness fragmentation,
where each 2MB huge-page has only a half 4KB-regions be-
ing accessed, and its splitting strategy is too conservative
to mitigate this problem. Chrono provides fine-grained fre-
quency measurement on base-page granularity, thus it is
able to relocate hot/cold pages precisely.

We also change the concurrency level and the working set
size to evaluate the adaptiveness of different systems in Fig-
ure 6b and Figure 6c. Memtis performs better under smaller
resident sizes, since the increased fast-tier memory ratio al-
leviates the bottleneck caused by hot page fragmentation.
Chrono optimizes the system better under write-intensive
workloads, which comes from the biased read/write perfor-
mance of Optane PM, indicating that Chrono avoids intensive

memory load/store to the slow-tier pages. We also find that
Chrono is more efficient under high memory utilization, and
the system-wide statistics method yields stable results for
different concurrency levels.

We then concentrate on the 50-process workload and pro-
file its latency distribution under the Linux-NB system in
Figure 7a. We find more improvement space at median la-
tency for read, and at tail latency for write. The latency
characteristics of all the tested systems are shown in Fig-
ure 7. Chrono achieves lower latency than the existing sys-
tems; it reduces the average latency and the P99 latency by
as much as 68% and 79% respectively. Auto-Tiering fails to
distinguish hot and cold pages precisely, because it incurs
high kernel-level overhead by maintaining the LAP lists that
include only coarse-grained frequency statistics. Similarly,
Multi-Clock and TPP distinguish hot pages by LRU lists with
a one-minute time window, which fails to capture the fine-
grained frequency difference. Memtis also achieves more
limited improvements in latency than Chrono because some
hot pages are migrated out of the fast memory due to hot
region bloat. Chrono measures the page access frequency
effectively and selects hot page candidates precisely, leading
to lower overall access latency.

5.1.2 Performance attribution. To investigate the rea-
sons for the performance improvement, we collect run-time
characteristics including the fast-tier access ratio, kernel
level overhead and context switch rate, and show the re-
sults in Figure 8. Generally, Chrono places more hot pages to
the fast-tier with moderate kernel overhead, while reducing
page-fault handling time by precise migration.

We compute the fast-tier memory access ratio (FMAR) by
sampling and dividing the size of memory access records to
fast and slow-tier memory. Higher FMAR indicates more hot
page identified properly. Chrono improves the FMAR from
49% to 77%, which is significantly higher than other systems.
Auto-Tiering spends over 14% of the execution time in kernel,
which is 2.2× the overhead of the Linux-NB baseline, reduc-
ing its optimization effectiveness. Chrono adds 2.1% kernel
time cost compared to Linux-NB, where 1.8% comes from the
DCSC scheme. Memtis avoids extra page fault and metadata
management overhead owing to the huge-page system, and
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Figure 7. The pmbench latency under various read to write ratio, normalized to Linux-NB.
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Figure 8. Run-time characteristics comparison.

it incurs sampling and statistic overhead, leading to 0.7%
total increase. We also observed that the majority of context
switches happen due to page faults. Multi-Clock has the low-
est context switch rate because it adopts LRU lists without
forcing page faults. Chrono reduces the context switch rate
compared to Auto-Tiering and TPP, because it selects hot
pages precisely and avoids redundant page migration.

5.1.3 Hot/cold page identification. We construct a syn-
thetic workload with various frequency levels to illustrate
the effectiveness of the hot/cold page identification schemes.
We profile 50 Cgroups and conduct one Pmbench process in
each with random access pattern. To generate different fre-
quencies, we use the delay parameter to add stall time before
every memory access, with 𝑖 unit(s) (50 cycles) of delay for
𝑖-th process. Throughput decreases with the increasing of ac-
cess delay, where cgroup-0 has 2.8× throughput of cgroup-49
under Linux-NB.

We monitor the sysfs/numa_stat of each cgroup to col-
lect the number of pages allocated to different memory tiers,
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Figure 9. The DRAM page percentage history of multi-
process benchmarks with different hotness levels.

and define the DRAM page percentage as:
#𝐹𝑎𝑠𝑡𝑇𝑖𝑒𝑟 𝑝𝑎𝑔𝑒

(#𝐹𝑎𝑠𝑡𝑇𝑖𝑒𝑟 𝑝𝑎𝑔𝑒 + #𝑆𝑙𝑜𝑤𝑇𝑖𝑒𝑟 𝑝𝑎𝑔𝑒) × 100%,

which captures the process’ page distribution. The DRAM
page percentage logs are shown in Figure 9. They demon-
strate that the NUMA-balancing scheme is not able to distin-
guish different access frequencies. All the processes allocate
approximately a 25% ratio of DRAM pages, which is the av-
erage fast-tier memory ratio in the workloads. Auto-Tiering,
Multi-Clock, TPP, and Memtis show results similar to Linux-
NB. The first three have coarse-grained hotness measure-
ment and fail to distinguish differences in access frequencies
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Figure 10. The parameter tuning effectiveness and sensitivity analysis.

at sub-second granularity. Memtis is a process-level solution
which does not distinguish the different levels of hotness
between processes. With Chrono, the hottest instance gets
nearly all pages allocated in DRAM, while the cold ones grad-
ually release their DRAM pages and consume more NVM. It
shows that the hot/cold page identification and migration
schemes of Chrono are fine-grained and effective.

5.1.4 Parameter tuning and Sensitivity test. To demon-
strate the statistical correlation between CIT and page access
frequency, we collect CIT values through the address space of
a Pmbench process with a Gaussian memory access pattern.
Figure 10a shows the CIT distribution at different addresses,
and the profiled access probability density function (PDF)
within the address space. The dashed line shows the mean
value of the access time interval (in log-scale), which is neg-
atively correlated with the access probability. CIT values are
distributed around the mean access interval, which indicates
that the CIT correctly reflects the page access frequency.

To verify the effectiveness of the adaptive parameter tun-
ing, we track the CIT threshold and rate limit. The results
are shown in Figure 10b, 10c. We find that the CIT thresh-
old converges to about 200 ms which is close to the access
interval upper bound of the hottest 25% pages. Given that
the fast-tier memory consists of 25% of the memory capac-
ity, we conclude that the automatically tuned CIT threshold
classifies hot/cold pages with high precision. It is worth
noting that the 200 ms CIT threshold represents a 300 ac-
cess/minute frequency, surpassing the measurement ability
of Auto-Tiering and TPP. We also find that the rate limit
decreases and turns stable during the execution time. The
page placement needs more intense adjustment at the be-
ginning of execution, where Chrono discovers it and adopts
an aggressive migration strategy. After a long-term page mi-
gration during execution, the hot and cold page distribution
tends to be optimal thus Chrono adopts a lower and stable
migration rate.
We further conduct the sensitivity analysis to other pa-

rameters by changing their values and observe the perfor-
mance change. Results are shown in Figure 10d. The scan-
step parameter has impact on the page-fault rate, where a
larger value leads to higher kernel-level overhead and lower
throughput, and a smaller scan-period has a similar impact.
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Figure 11. Graph 500 macrobenchmark: (a) execution time
with various working set sizes and page granularities, and
(b) sensitivity analysis.

CIT-based measurement scheme decouples the frequency
granularity from the scan-step and scan-period, such that our
system is able to set moderate values for these two parame-
ters. The P-victim parameter controls the sampling ratio in
DCSC, where a too small sample set is not representative of
the overall distribution, and a too large one leads to increased
overhead. For the 𝛿-step parameter used in the semi-auto
tuning scheme, a smaller value leads to slower convergence
procedure and decreased performance.

5.2 Macrobenchmark: Graph500
The Graph500 benchmark is used to analysis the perfor-
mance of breadth first search (BFS) and single-source shortest
path (SSSP) algorithms on a weighted, undirected graph [14].
It employs a scalable data generator through which we con-
trol the memory consumptions.

We runmulti-processes Graph500 test with different work-
ing set sizes from 128 GB to 256 GB and enforce a base-page
setting for all the systems. The speedup results are shown in
Figure 11a. We find that under different memory pressure,
Chrono has better speedup ratios compared to Auto-Tiering,
Multi-Clock, TPP, and Memtis. It outperforms the Linux-
NB by 2.49×, 2.29×, and 2.05× under different working set
sizes. The main reason is that the graph searching algorithm
produces hot regions following the various edge degree dis-
tribution, of which the hotter items and the colder items
have mild access frequency difference. The methods based
on page-fault counters fail to identify the real hot pages
from the warm pages, because their inadequate frequency
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Figure 12. In-memory database application throughput.

resolution leads to a poor ability to distinguish the hotness
borderline. Memtis, a PEBS-based solution, achieves perfor-
mance improvements similar to the LRU-based methods, as
it has limited sampling capacity to trace the large amount of
base pages. Chrono is able to measure frequency precisely
and migrate the hotter items stably to the fast-tier.
We also conduct the same experiments with huge-page

settings, and show the results in Figure 11a. The huge-page
system with Linux-NB has a 8% performance gain compared
to its base-page counterpart, as it mainly benefits from the
reduced page-fault handling overhead. Memtis has a sig-
nificant performance gain under huge-page settings, and
outperforms Chrono by 1.03×, but is slower than Chrono
under base-page settings due to the hot region bloat issue.
Chrono has slightly higher system overhead under huge-
page settings, though it still outperforms Linux-NB by 2.06×
because it includes an adaptive hot/cold page identification
strategy with respect to different page sizes.
To analyze the sensitivity of the system parameters on

the Graph500 benchmark, we conduct the experiments with
different parameter values and show the results in Figure 11b.
Similarly, the scan-step, scan-period and the P-victim have
impact on the page-fault rate, and the 𝛿-step has impact
on the convergence speed of the semi-auto tuning scheme.
With all parameters initialized in a reasonable range cen-
tered on the default value, Chrono is able to maintain stable
performance with different settings, which indicates that
our CIT-based measurement scheme and DCSC approach
are adaptive to different system environments.

5.3 Applications: Memcached and Redis
We use the popular in-memory database applications, Mem-
cached and Redis, to evaluate the tiered memory systems.
For key-value generation and performance statistics, we use
the standard benchmark named memtier-benchmarks [65].
We construct a key-value store including 500 M items,

which consumes 160 GB memory. To maintain the same
initial page distribution, we start the database and perform
sequential initialization on all the items, with Gaussian dis-
tributed SET/GET ops for performance statistics. Results
are collected as the normalized throughput values shown in
Figure 12. As the results show, Chrono generally provides
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Figure 13. Design choice analysis.

better overall throughput on Memcached and Redis. These
in-memory databases generate massive page access oper-
ations, whose active working set sizes are larger than the
DRAM space. The systems with coarse-grained frequency
measurement schemes are not able to distinguish real hot
pages from the slow tier under memory-intensive environ-
ment. For Memtis, the huge-page system leads to memory
bloat with an average bloat rate of 145%, such that the fast-
tier memory pages are not fully utilized, and the actual hot
region is significantly smaller than the identified one. Chrono
manages to perform meticulous hotness measurement and
flexible page migration, such that it identifies and relocates
hot and cold pages precisely.

5.4 Design Choice Analysis
To understand the benefit of different design parts, we first
implement Chrono-basic which adopts the one-round CIT
filtering, and the semi-auto parameter tuning scheme (with
a 120 MB/s rate limit, the stable state in adaptive tuning).
To evaluate the candidate filtering design, we implement
Chrono-twice and Chrono-thrice, which use a 2-round and a
3-round scan for hot page selection respectively. To evaluate
the parameter tuning scheme, we implement Chrono-full,
which adopts 2-round candidate filtering and DCSC schemes
simultaneously. To show the potential of the low-overhead
semi-auto tuning, we also consider a Chrono-manual con-
figuration, which is based in the semi-auto tuning scheme
and for which we configure the rate limit parameters as the
average of adaptive tuning results per minute.
We use Pmbench for the evaluation and we show the

results in Figure 13. The improvement from Linux-NB to
Chrono-basic shows the benefit of timer-based measure-
ment scheme, indicating that timers provide more precise
frequency resolution to classify hot/cold pages better. Com-
paring Chrono-twice with Chrono-basic, we conclude that
the filtering scheme improves Chrono by reducing the mea-
surement deviation and improving the hot page migration
efficiency. The similar performance of Chrono-thrice and
Chrono-twice indicates that a 2-round selection is enough,
as more rounds have marginal impact on performance while
consumingmore resources. The improvement betweenChrono-
twice and Chrono-full comes from the DCSC-based tuning
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scheme, which adjusts key parameters adaptively and fur-
ther reduces redundant page migration. Last but not least,
Chrono-manual exhibits a comparable performance, with
slightly lower hot page identification efficiency and more
user-level execution time. It shows that the low-overhead
semi-auto tuning is viable when ideal manual configuration
is provided.

6 Related Work
There have been many studies dedicated to heterogeneous
memory system design. Existing works focus on distinct im-
portant fields including memory expansion [3, 24, 59, 62, 87],
disaggregation and pooling [5, 22, 30, 51, 76, 83], and next-
generation storage computing technologies [10, 15, 32]. They
pay more attention to the system functionality requirements
and interface construction methods. Our work focuses on op-
timizing such heterogeneous memory architectures, where
memory hotness identification and page migration matter.
The topic of placement optimizations for heterogeneous

memory architectures has been extensively studied. Apart
from the studies we analyzed in this paper, there are some
user-level page classification and migration researches [16,
45, 58, 68]. User-level management is able to utilize more
specific application statistics but loses transparency, while
kernel-level tiered memory management has inherent limi-
tations caused by restricted resource. Meanwhile, some re-
searchers also reconsidered the architecture of the memory
hierarchy, including optimizations to the existing caching
paradigm [41], and the design of non-exclusive memory
tiers [81]. These works are orthogonal to our research, as
they focus on the memory hierarchy organization principles
and the page accessing mechanisms.
There are also some studies focusing on page migration

optimizations [44, 71, 79, 85]. They encompass advanced
mechanisms to accelerate the page migration procedure in
the kernel space, leaving the page migration criterion un-
changed. Such optimization methods include symmetric mi-
gration, batched migration, huge-page-aware migration, etc.
These optimized migration techniques are orthogonal to the
contributions regarding hotness measurement and hot/cold
identification.

7 Conclusion
In this paper, we present Chrono, an OS-level tiered mem-
ory management system that precisely captures page access
frequencies in different tiers and migrates hot/cold pages
efficiently. We propose to use CIT as a meticulous page hot-
ness measurement, enhancing the kernel-level access fre-
quency assessment ability. We design adaptive parameter
tuning methods to enable flexible hot page migration, com-
bining them with a proactive demotion scheme to stabilize
overall performance. We implement Chrono and evaluate it

using various memory-intensive benchmarks and applica-
tions. Experimental results show that Chrono outperforms
state-of-the-art tiering systems by a large margin.

Acknowledgments
We thank our shepherd Renaud Lachaize and the anonymous
reviewers for their valuable feedback and insightful sugges-
tions. This work is supported by National Key Research and
Development Program of China (Grant No. 2023YFB4502902),
National Natural Science Foundation of China (NSFC) (Grant
No. 62332012, 62227809, 62302290), the Fundamental Re-
search Funds for the Central Universities, Shanghai Mu-
nicipal Science and Technology Major Project (Grant No.
2021SHZDZX0102), Natural Science Foundation of Shanghai
(Grant No. 22ZR1435400), and Huawei Innovation Research
Plan.

References
[1] Neha Agarwal and Thomas F Wenisch. Thermostat: Application-

transparent page management for two-tiered main memory. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
631–644, 2017.

[2] A Agawal and Anoop Gupta. Memory-reference characteristics of mul-
tiprocessor applications under mach. In Proceedings of the 1988 ACM
SIGMETRICS conference on Measurement and modeling of computer
systems, pages 215–225, 1988.

[3] Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin
Kim, Jaemin Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi, and
Yang Seok Ki. Enabling cxl memory expansion for in-memory database
management systems. In Data Management on New Hardware, pages
1–5. 2022.

[4] Soramichi Akiyama and Takahiro Hirofuchi. Quantitative evaluation
of intel pebs overhead for online system-noise analysis. In Proceedings
of the 7th International Workshop on Runtime and Operating Systems
for Supercomputers ROSS 2017, pages 1–8, 2017.

[5] Hasan Al Maruf and Mosharaf Chowdhury. Memory disaggregation:
advances and open challenges. ACM SIGOPS Operating Systems Review,
57(1):29–37, 2023.

[6] andikleen. Intel pmu profiling tools, 2024. https://github.com/
andikleen/pmu-tools.

[7] Brad Benton. Ccix, gen-z, opencapi: Overview & comparison. In
OpenFabrics Workshop, 2017.

[8] Shai Bergman, Priyank Faldu, Boris Grot, Lluís Vilanova, and Mark
Silberstein. Reconsidering os memory optimizations in the presence
of disaggregated memory. In Proceedings of the 2022 ACM SIGPLAN
International Symposium on Memory Management, pages 1–14, 2022.

[9] Georgios Bitzes and Andrzej Nowak. The overhead of profiling using
pmu hardware counters. CERN openlab report, pages 1–16, 2014.

[10] Anthony M Cabrera, Aaron R Young, and Jeffrey S Vetter. Design and
analysis of cxl performance models for tightly-coupled heterogeneous
computing. In Proceedings of the 1st International Workshop on Extreme
Heterogeneity Solutions, pages 1–6, 2022.

[11] George Casella and Roger L Berger. Statistical inference. Cengage
Learning, 2021.

[12] An Chen. A review of emerging non-volatile memory (nvm) technolo-
gies and applications. Solid-State Electronics, 125:25–38, 2016.

[13] Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao Zheng, Yuqiang
Chen, Wenyuan Dai, Bingsheng He, Weng-Fai Wong, Guoan Wu,
et al. Optimizing in-memory database engine for ai-powered on-line

848

https://github.com/andikleen/pmu-tools
https://github.com/andikleen/pmu-tools


Chrono: Meticulous and Flexible Memory Tiering EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

decision augmentation using persistent memory. Proceedings of the
VLDB Endowment, 14(5):799–812, 2021.

[14] Graph 500 Steering Committee. Graph 500 benchmark specification,
2022. https://graph500.org/?page_id=12.

[15] Thomas M Coughlin and William R Tonti. Computing nearer to data.
Computer, 55(7):82–87, 2022.

[16] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sud-
hanva Gurumurthi, and Ada Gavrilovska. Kleio: A hybrid memory
page scheduler with machine intelligence. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, pages 37–48, 2019.

[17] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. Data tiering in heterogeneous memory systems. In Proceed-
ings of the Eleventh European Conference on Computer Systems, pages
1–16, 2016.

[18] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Dani-
jela Mijailovic, et al. Towards an adaptable systems architecture for
memory tiering at warehouse-scale. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 727–741, 2023.

[19] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,
Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin
Katti. Reducing dram footprint with nvm in facebook. In Proceedings
of the Thirteenth EuroSys Conference, pages 1–13, 2018.

[20] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W
Mahoney, and Kurt Keutzer. Ai and memory wall. IEEE Micro, 2024.

[21] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Ke-
shav Pingali. Single machine graph analytics on massive datasets
using intel optane dc persistent memory. Proceedings of the VLDB
Endowment, 13(8).

[22] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo
Jung. Direct access, high-performance memory disaggregation with
directcxl. In 2022 USENIX Annual Technical Conference (USENIX ATC
22), pages 287–294, 2022.

[23] Pmem Google Group. Cxl1.1 and memory tiering, 2022. https://groups.
google.com/g/pmem/c/iXNTTIxI3j8.

[24] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A program-behavior-
guided far memory system. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 692–708, 2023.

[25] Mohammad Hossein Hajkazemi, Mohammad Khavari Tavana, and
Houman Homayoun. Wide i/o or lpddr? exploration and analysis of
performance, power and temperature trade-offs of emerging dram
technologies in embedded mpsocs. In 2015 33rd IEEE International
Conference on Computer Design (ICCD), pages 62–69. IEEE, 2015.

[26] Kostas Hatalis, Despina Christou, Joshua Myers, Steven Jones, Keith
Lambert, Adam Amos-Binks, Zohreh Dannenhauer, and Dustin Dan-
nenhauer. Memory matters: The need to improve long-term memory
in llm-agents. In Proceedings of the AAAI Symposium Series, volume 2,
pages 277–280, 2023.

[27] Taekyung Heo, Yang Wang, Wei Cui, Jaehyuk Huh, and Lintao Zhang.
Adaptive page migration policy with huge pages in tiered memory
systems. IEEE Transactions on Computers, 71(1):53–68, 2020.

[28] Seokbin Hong, Won-Ok Kwon, and Myeong-Hoon Oh. Hardware
implementation and analysis of gen-z protocol for memory-centric
architecture. IEEE Access, 8:127244–127253, 2020.

[29] C Intel. Intel® 64 and ia-32 architectures software developer’s manual
volume 3 (3a, 3b, 3c & 3d): System programming guide. Denver,[2006],
2023.

[30] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee,
Miryeong Kwon, and Myoungsoo Jung. CXL-ANNS: Software-
Hardware collaborative memory disaggregation and computation for
Billion-Scale approximate nearest neighbor search. In 2023 USENIX

Annual Technical Conference (USENIX ATC 23), pages 585–600, 2023.
[31] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook

Kim, Hanho Jin, and Keith Kim. Hbm (high bandwidth memory)
dram technology and architecture. In 2017 IEEE International Memory
Workshop (IMW), pages 1–4. IEEE, 2017.

[32] Myoungsoo Jung. Hello bytes, bye blocks: Pcie storage meets compute
express link for memory expansion (cxl-ssd). In Proceedings of the 14th
ACM Workshop on Hot Topics in Storage and File Systems, pages 45–51,
2022.

[33] Sudarsun Kannan, AdaGavrilovska, Vishal Gupta, and Karsten Schwan.
Heteroos: Os design for heterogeneous memory management in data-
center. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, pages 521–534, 2017.

[34] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaib-
hav Gogte, and Ronald Dreslinski. Improving performance of flash
based Key-Value stores using storage class memory as a volatile mem-
ory extension. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 821–837, 2021.

[35] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. Exploring the
design space of page management for Multi-Tiered memory systems.
In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages
715–728, 2021.

[36] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 611–626, 2023.

[37] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach,
and Emmett Witchel. Ingens: Huge page support for the os and hy-
pervisor. ACM SIGOPS Operating Systems Review, 51(1):83–93, 2017.

[38] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, et al. Software-defined far memory in warehouse-
scale computers. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 317–330, 2019.

[39] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. Memtis: Efficient memory tiering with dynamic page classifica-
tion and page size determination. In Proceedings of the 29th Symposium
on Operating Systems Principles, pages 17–34, 2023.

[40] Erich Leo Lehmann and Henry Scheffé. Completeness, similar regions,
and unbiased estimation—part ii. In Selected Works of EL Lehmann,
pages 269–286. Springer, 2012.

[41] Baptiste Lepers and Willy Zwaenepoel. Johnny cache: the end of
DRAM cache conflicts (in tiered main memory systems). In 17th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23), pages 519–534, 2023.

[42] Chuandong Li, Sai Sha, Yangqing Zeng, Xiran Yang, Yingwei Luo,
Xiaolin Wang, Zhenlin Wang, and Diyu Zhou. Taming hot bloat under
virtualization with HUGESCOPE. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pages 999–1012, 2024.

[43] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, et al. Pond: Cxl-based memory pooling systems
for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pages 574–587, 2023.

[44] Felix Xiaozhu Lin and Xu Liu. Memif: Towards programming heteroge-
neous memory asynchronously. ACM SIGPLAN Notices, 51(4):369–383,
2016.

[45] Haikun Liu, Renshan Liu, Xiaofei Liao, Hai Jin, Bingsheng He, and
Yu Zhang. Object-level memory allocation and migration in hybrid
memory systems. IEEE Transactions on Computers, 69(9):1401–1413,
2020.

849

https://graph500.org/?page_id=12
https://groups.google.com/g/pmem/c/iXNTTIxI3j8
https://groups.google.com/g/pmem/c/iXNTTIxI3j8


EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Zhenlin et al.

[46] LKP-test. Lkp-tests - a linux* kernel performance test and analysis
tool, 2021. https://github.com/intel/lkp-tests.

[47] Chen Luo andMichael J Carey. Breaking downmemory walls: adaptive
memory management in lsm-based storage systems. Proceedings of
the VLDB Endowment, 14(3):241–254, 2020.

[48] Adnan Maruf, Ashikee Ghosh, Janki Bhimani, Daniel Campello, Andy
Rudoff, and Raju Rangaswami. Multi-clock: Dynamic tiering for hybrid
memory systems. In HPCA, pages 925–937, 2022.

[49] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. Tpp: Transparent
page placement for cxl-enabled tiered-memory. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3, pages 742–755,
2023.

[50] Syed AkbarMehdi, Deukyeon Hwang, Simon Peter, and Lorenzo Alvisi.
ScaleDB: A scalable, asynchronous In-Memory database. In 17th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23), pages 361–376, 2023.

[51] Pankaj Mehra and Tom Coughlin. Taming memory with disaggrega-
tion. Computer, 55(9):94–98, 2022.

[52] Gorman Mel, Molnar Ingo, and Torvalds Linus. Mm:
numa: Document automatic numa balancing sysctls, 2021.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?h=v5.15&id=10fc05d0e551146ad6feb0ab8902d28a2d3c5624.

[53] Memcached. Free and open source, high-performance, distributed
memory object caching system, 2022. https://memcached.org/.

[54] Theodore Michailidis, Alex Delis, and Mema Roussopoulos. Mega:
Overcoming traditional problems with os huge page management. In
Proceedings of the 12th ACM International Conference on Systems and
Storage, pages 121–131, 2019.

[55] Richard C Murphy, Kyle BWheeler, Brian W Barrett, and James A Ang.
Introducing the graph 500. Cray Users Group (CUG), 19:45–74, 2010.

[56] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata
Ausavarungnirun. A modern primer on processing in memory. In
Emerging computing: from devices to systems: looking beyond Moore
and Von Neumann, pages 171–243. Springer, 2022.

[57] Alan Nair, Sandeep Kumar, Aravinda Prasad, Ying Huang, Andy Rud-
off, and Sreenivas Subramoney. Telescope: telemetry for gargantuan
memory footprint applications. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pages 409–424, 2024.

[58] Dimitrios S Nikolopoulos, Theodore S Papatheodorou, Constantine D
Polychronopoulos, Jesús Labarta, and Eduard Ayguadé. User-level
dynamic page migration for multiprogrammed shared-memory mul-
tiprocessors. In Proceedings 2000 International Conference on Parallel
Processing, pages 95–103. IEEE, 2000.

[59] Geraldo F Oliveira, Saugata Ghose, Juan Gómez-Luna, Amirali
Boroumand, Alexis Savery, Sonny Rao, Salman Qazi, Gwendal Grignou,
Rahul Thakur, Eric Shiu, et al. Extending memory capacity in modern
consumer systems with emerging non-volatile memory: Experimental
analysis and characterization using the intel optane ssd. IEEE Access,
2023.

[60] OpenSUSE. Automatic non-uniform memory access (numa) balanc-
ing, 2022. https://doc.opensuse.org/documentation/leap/tuning/html/
book-tuning/cha-tuning-numactl.html.

[61] Mark Oskin and Gabriel H Loh. A software-managed approach to die-
stacked dram. In 2015 International Conference on Parallel Architecture
and Compilation (PACT), pages 188–200. IEEE, 2015.

[62] SJ Park, H Kim, KS Kim, J So, J Ahn, WJ Lee, D Kim, YJ Kim, J Seok,
JG Lee, et al. Scaling of memory performance and capacity with cxl
memory expander. In 2022 IEEE Hot Chips 34 Symposium (HCS), pages
1–27. IEEE Computer Society, 2022.

[63] Pmem.io. Intel optane persistent memory module provisioning., 2022.
https://docs.pmem.io/ipmctl-user-guide/provisioning.

[64] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. Hemem: Scalable tiered memory management for big data
applications and real nvm. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages 392–407, 2021.

[65] Redis. Memtier benchmark: A high-throughput benchmarking tool for
redis and memcached, 2022. https://github.com/redislabs/memtier_
benchmark.

[66] Redis. The open source, in-memory data store used by millions of
developers as a database, cache, streaming engine, andmessage broker.,
2022. https://redis.io/.

[67] Jie Ren, Dong Xu, Junhee Ryu, Kwangsik Shin, Daewoo Kim, and Dong
Li. Mtm: Rethinking memory profiling and migration for multi-tiered
large memory. In Proceedings of the Nineteenth European Conference
on Computer Systems, pages 803–817, 2024.

[68] Jee Ho Ryoo, Lizy K John, and Arkaprava Basu. A case for granu-
larity aware page migration. In Proceedings of the 2018 International
Conference on Supercomputing, pages 352–362, 2018.

[69] MuhammadAditya Sasongko, Milind Chabbi, Paul HJ Kelly, and Didem
Unat. Precise event sampling on amd versus intel: Quantitative and
qualitative comparison. IEEE Transactions on Parallel and Distributed
Systems, 34(5):1594–1608, 2023.

[70] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evan-
gelos Eleftheriou. Memory devices and applications for in-memory
computing. Nature nanotechnology, 15(7):529–544, 2020.

[71] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, et al. Rowclone: Fast and energy-
efficient in-dram bulk data copy and initialization. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 185–197, 2013.

[72] Sai Sha, Chuandong Li, Xiaolin Wang, Zhenlin Wang, and Yingwei
Luo. Hardware-software collaborative tiered-memory management
framework for virtualization. ACM Transactions on Computer Systems,
42(1-2):1–32, 2024.

[73] Anil Shanbhag, Nesime Tatbul, David Cohen, and Samuel Madden.
Large-scale in-memory analytics on intel® optane™ dc persistent
memory. In Proceedings of the 16th International Workshop on Data
Management on New Hardware, pages 1–8, 2020.

[74] Debendra Das Sharma. Compute express link®: An open industry-
standard interconnect enabling heterogeneous data-centric computing.
In 2022 IEEE Symposium on High-Performance Interconnects (HOTI),
pages 5–12. IEEE, 2022.

[75] Debendra Das Sharma and Siamak Tavallaei. Compute express link
2.0 white paper. Tech. Rep., 2020.

[76] Joonseop Sim, Soohong Ahn, Taeyoung Ahn, Seungyong Lee,
Myunghyun Rhee, Jooyoung Kim, Kwangsik Shin, Donguk Moon,
Euiseok Kim, and Kyoung Park. Computational cxl-memory solu-
tion for accelerating memory-intensive applications. IEEE Computer
Architecture Letters, 2022.

[77] Sajjad Tamimi, Florian Stock, Andreas Koch, Arthur Bernhardt, and
Ilia Petrov. An evaluation of using ccix for cache-coherent host-fpga
interfacing. In 2022 IEEE 30th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 1–9.
IEEE, 2022.

[78] Alexander Van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,
and Alfons Kemper. Persistent memory i/o primitives. In Proceedings of
the 15th InternationalWorkshop on DataManagement on NewHardware,
pages 1–7, 2019.

[79] Hao Wang, Jie Zhang, Sharmila Shridhar, Gieseo Park, Myoungsoo
Jung, and Nam Sung Kim. Duang: Fast and lightweight page migration
in asymmetric memory systems. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 481–493.
IEEE, 2016.

850

https://github.com/intel/lkp-tests
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v5.15&id=10fc05d0e551146ad6feb0ab8902d28a2d3c5624
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v5.15&id=10fc05d0e551146ad6feb0ab8902d28a2d3c5624
https://memcached.org/
https://doc.opensuse.org/documentation/leap/tuning/html/book-tuning/cha-tuning-numactl.html
https://doc.opensuse.org/documentation/leap/tuning/html/book-tuning/cha-tuning-numactl.html
https://docs.pmem.io/ipmctl-user-guide/provisioning
https://github.com/redislabs/memtier_benchmark
https://github.com/redislabs/memtier_benchmark
https://redis.io/


Chrono: Meticulous and Flexible Memory Tiering EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[80] MichèleWeiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier
Iffrig, Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jack-
son, and Mark Parsons. An early evaluation of intel’s optane dc per-
sistent memory module and its impact on high-performance scientific
applications. In Proceedings of the international conference for high
performance computing, networking, storage and analysis, pages 1–19,
2019.

[81] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan,
and Ren Wang. Nomad: Non-Exclusive memory tiering via trans-
actional page migration. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), pages 19–35, 2024.

[82] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang.
Characterizing the performance of intel optane persistent memory: a
close look at its on-dimm buffering. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 488–505, 2022.

[83] Chuhao Xu, Yiyu Liu, Zijun Li, Quan Chen, Han Zhao, Deze Zeng,
Qian Peng, Xueqi Wu, Haifeng Zhao, Senbo Fu, et al. Faasmem: Im-
proving memory efficiency of serverless computing with memory pool
architecture. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 331–348, 2024.

[84] Dong Xu, Junhee Ryu, Kwangsik Shin, Pengfei Su, and Dong Li.
FlexMem: Adaptive page profiling and migration for tiered memory.
In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages
817–833, 2024.

[85] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble page management for tiered memory systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 331–345,
2019.

[86] Jisoo Yang and Julian Seymour. Pmbench: A micro-benchmark for
profiling paging performance on a system with low-latency ssds. In
Information Technology-New Generations, pages 627–633. Springer,
2018.

[87] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin-
yong Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S
Kim. Overcoming the memory wall with CXL-Enabled SSDs. In 2023
USENIX Annual Technical Conference (USENIX ATC 23), pages 601–617,
2023.

Appendix A Artifact
A.1 Abstract
The artifact of this paper contains the prototype implementa-
tion of Chrono, a novel tiered memory system that provides
fine-grained hotness measurement and flexible page migra-
tion with low overhead. The artifact is based on the Linux
kernel v5.18.0, with 1.9k SLOC code changes. It also includes
the compiling and installing instructions and part of the raw
experimental data used in the evaluation section.

A.2 Description & Requirements
How to access. You can access the source code of Chrono

at this GitHub repository: https://github.com/SJTU-DDST/
chrono-project. The artifact is released under the GPLv2
license, which follows the license of the Linux kernel. We
have also uploaded the artifact to Zenodo, and the DOI is
https://doi.org/10.5281/zenodo.14875828.

Hardware requirements. To download and compile the
artifact, you need a machine with at least 8GB of free disk

space and 4GB of DRAM. Moreover, we highly recommend
using a server with physical Intel Optane DC Persistent
Memory (PMem)modules to better evaluate the performance
of Chrono on a tiered memory system. A server with 2 Intel
Xeon Gold 6348 CPUs and 128GB of DRAM and 256GB of
PMem is used in our evaluation.

Software dependencies. Any Linux distribution with ker-
nel v5.15 or later is theoretically compatible with Chrono.
Moreover, we recommend using Ubuntu 20.04 LTS as the
host system, which make the compiling process and installa-
tion of dependencies easier.

Additionally, the following tools are required to construct
a tiered memory system:

• ndctl is a utility for managing the Non-Volatile Mem-
ory Device Control and NVDIMM subsystem.

• ipmctl is a utility for managing Intel Optane DC Per-
sistent Memory modules.

• daxctl is a utility for managing Device-DAX devices.

You can check the installation instructions by referring to
the official documentation at https://docs.pmem.io/.

Benchmarks. The suggested benchmarks for evaluating
Chrono are listed in the evaluation section of the paper. You
can download the source code of these benchmarks from the
following links:

• PmBench: github repo at
https://github.com/blakecaldwell/pmbench

• Graph500: github repo at
https://github.com/graph500/graph500

• Memcached: github repo at
https://github.com/memcached/memcached

A.3 Set-up
The compilation and installation of Chrono are almost iden-
tical to the process of compiling the Linux kernel.

Step 1: Download the source code. You can download
the source code of Chrono from the GitHub repository.

git clone [our repository]
cd chrono-project

Step 2: Compile the kernel. We provide a script to com-
pile the Chrono kernel.

bash compile-install.sh
Make sure that current user has sudo privilege, and the

.config file is successfully saved during the menuconfig step.

Step 3: Reboot the system. Before rebooting, make sure
that the kernel is correctly installed, by checking the boot
directory:

ls /boot
While rebooting, make sure to select the correct kernel

version from the boot menu.
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Step 4: Install PMem Tools. Install the NDCTL, IPMCTL,
and DAXCTL tools to manage the PMem modules.

Step 5: Configure Tiered Memory. The persistent mem-
ory is configured as DAX devices by default. To make the
persistent memory as system RAM

daxctl reconfigure-device -m system-ram daxX.Y
Check our README document in github repo for detailed

instructions, where daxX.Y should be replaced with the ac-
tual device name.

Step 6: Enable Chrono. To enable the Chrono features:
echo 1 > /sys/kernel/mm/numa/demotion_enabled
echo 2 > /proc/sys/kernel/numa_balancing
Then check our README document in github repo for

more detailed instructions to adjust the parameters of Chrono.

A.4 Evaluation workflow
We mainly show an example of using PmBench to evaluate
Chrono in this section.

Step 1: Install LKP tool. The LKP (Linux Kernel Perfor-
mance) is a benchmarking tool that can be used to evaluate
the performance of the Linux kernel, which is available at
https://github.com/intel/lkp-tests.git.

Step 2: Run PmBench. We provide samples in test direc-
tory.

cd test/pmbench
sudo lkp run ./60G-4G-64-tiering.yaml
You should be able to see the benchmark results as json

files in the test/pmbench directory. Our repo also includes
the raw logs for a baseline kernel. More details about the
json results can be found in the LKP documentation.
We suggest running the benchmark using numactl and

taskset to get stable results. More detailed instructions can
be found in our documentation.

Appendix B Theoretical Analysis
Here we provide the theoretical analysis supporting our
candidate filtering scheme.

B.1 Lower measurement variance.
If we perform multiple rounds of scan and get multiple CIT
values of a page, we need to estimate the access period accu-
rately. A naive choice is to calculate the mean-value as an
estimation. Our candidate filtering design is equivalent to a
maximum-value estimator. Here we show that the maximum
value is a better choice when compared to the mean value.
Specifically, the former has a lower variance.

Assume that we are measuring a page with inherent access
period 𝑇0. During the run-time we scan it 𝑛 times and get a
series of CIT values, denoted as 𝑡1, 𝑡2, . . . , 𝑡𝑛 . Because the scan
events occur independently of the application execution, we

have that 𝑡𝑖 are i.i.d. following a uniform distribution:

𝑡𝑖 ∼ U[0,𝑇0] . (1)

For an mean-value estimator, it uses

𝑇1 =
2
𝑛

𝑛∑︁
𝑖=1

𝑡𝑖 (2)

to estimate 𝑇0. We calculate the mean and variance of 𝑇1 as:

E(𝑇1) =
2
𝑛

𝑛∑︁
𝑖=1

E(𝑡𝑖 ) =
2
𝑛
· 𝑛 · 𝑇0

2
= 𝑇0,

D(𝑇1) =
4
𝑛2

𝑛∑︁
𝑖=1

D(𝑡𝑖 ) =
4
𝑛2

· 𝑛 ·
𝑇 2
0
12

=
𝑇 2
0
3𝑛

.

(3)

Meanwhile, for a maximum-value estimator, it uses

𝑇2 =
𝑛 + 1
𝑛

max
𝑖

𝑡𝑖 (4)

to estimate𝑇0. Denote the variablemax𝑖 𝑡𝑖 as𝑀 , and we have
the cumulative distribution function of𝑀 is

𝐹𝑀 (𝑚) = 𝑃 (𝑀 ≤ 𝑚) =
(
𝑚

𝑇0

)𝑛
. (5)

We then calculate the mean and variance of 𝑇2 as:

E(𝑇2) =
𝑛 + 1
𝑛

∫ 𝑇0

𝑚=0
𝑚 · 𝐹 ′𝑀 (𝑚) 𝑑𝑚 = 𝑇0,

D(𝑇2) =
(𝑛 + 1)2

𝑛2

(∫ 𝑇0

𝑚=0
𝑚2 · 𝐹 ′𝑀 (𝑚) 𝑑𝑚 − E2 (𝑀)

)
=

1
𝑛(𝑛 + 2)𝑇

2
0 .

(6)

Comparing equation 3 and equation 6, we conclude that the
maximum-value estimator has lower variance. Actually, we
are able to prove that the maximum-value estimator is the
minimum variance unbiased estimator in our case, following
the lehmann-scheffe theorem [11, 40].

B.2 Higher selection efficiency.
When we consider cold pages (i.e., whose access period is
greater than the CIT threshold), they also have a chance to
be measured as hot because of the randomness of CIT. A
classification method is better if it ensures a higher real-hot-
page ratio in the selected hot pages. On the other hand, the
scan procedure is executed in kernel mode consuming CPU
and memory. We can model the promotion efficiency by the
real-hot-page ratio and the cost.

Denote all the pages as a set {𝑝𝑔𝑖 }, where 𝑇𝑖 is the access
period of 𝑝𝑔𝑖 , and the CIT threshold is𝑇𝐻 . The real hot page
number is 𝑁ℎ = |{𝑖 |𝑇𝑖 < 𝑇𝐻 }|. If we adopt 𝑛-round scan, the
probability of a page 𝑝𝑔𝑖 to be identified as hot page is

𝑃ℎ𝑜𝑡 (𝑝𝑔𝑖 ) =
{

1 ,𝑇𝑖 < 𝑇𝐻(
𝑇𝐻
𝑇𝑖

)𝑛
,𝑇𝑖 ≥ 𝑇𝐻

. (7)
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Figure B1. Image of function ℎ, where 𝛼 changes in {0.25,
0.3, 0.4, 0.6, 0.9, 1}.

Then we model the page hotness distribution using a cumu-
lative function and its normalized density:

𝐹 (𝑡) ≜ |{𝑖 |𝑇𝑖 < 𝑡}| , 𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ (0,∞).

𝑓 (𝑥) = 1
𝑁ℎ ·𝑇𝐻 𝐹 ′ (𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑥 =

𝑡

𝑇𝐻
.

(8)

So that the real-hot-page ratio is calculated as

𝑅𝑓 (𝑛) =
1

1 + 𝑆 𝑓 (𝑛)
,

𝑤ℎ𝑒𝑟𝑒 𝑆 𝑓 (𝑛) =
∫ ∞

𝑥=1
𝑓 (𝑥)

(
1
𝑥

)𝑛
𝑑𝑥 .

(9)

Intuitively, 𝑆 𝑓 (𝑛) represents the number of miss-classified
cold pages. Further taking the cost of the 𝑛-round scan into
consideration, we define the hot page selection efficiency as:

E𝑓 (𝑛) =
1
𝑛
𝑅𝑓 (𝑛). (10)

With equation 10, we can calculate the efficiency E𝑓 (𝑛) for
any given page hotness distribution 𝑓 and round number 𝑛.
The realistic distribution of access period should be bounded.
Some existing work [2] has shown that the distribution is
generally dense in the hot region, and sparse in the cold
region.

We use a class of function ℎ(𝑥, 𝛼) in place of 𝑓 (𝑥) to cap-
ture the feature, where ℎ is defined as

ℎ(𝑥, 𝛼) = 1
𝐶𝛼

· 𝑥1− 1
𝛼 · 𝛼𝛼𝑥+ 1

𝛼𝑥 , 𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 ≤ 1. (11)

The𝐶𝛼 is a coefficient ensuring
∫ 1
𝑥=0 ℎ(𝑥, 𝛼) 𝑑𝑥 = 1, required

by the normalization property of 𝑓 (𝑥). Figure B1 shows the
image of function ℎ(𝑥, 𝛼) with some fixed 𝛼 value between
0.25 and 1. The maximum of ℎ(𝑥, 𝛼) get higher value when
𝛼 is smaller.

We first analyze the case 𝛼 = 1, where ℎ(𝑥, 𝛼) becomes a
constant function ℎ(𝑥) = 1, indicating totally random page
distribution over access period. Then the efficiency Eℎ (𝑛) is
calculated as

Eℎ (𝑛) =
1
𝑛

1
1 +

∫ ∞
𝑥=1 (

1
𝑥
)𝑛 𝑑𝑥

=
𝑛 − 1
𝑛2

, 𝑛 = 1, 2, 3 . . . (12)
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Figure B2. Numeric calculation results of Eℎ (𝑥,𝛼 ) (𝑛), where
𝑛 changes from 2 to 7.

It is obvious that Eℎ (𝑛) has a maximum value at 𝑛 = 2 in
equation 12. In another word, under a workload with random
page access period distribution, the two-round filtering has
the best efficiency.

We also analyze the case of Eℎ (𝑥,𝛼 ) (𝑛) with various 𝛼 val-
ues by the numeric integral method. Figure B2 plots the
image of promotion efficiency v.s. 𝛼 value. The results show
that round number 𝑛 = 2 generally gets a higher efficiency. It
is worth noting that the format of ℎ function and domain of
𝛼 value are of our choice. If one settles the cold page density
value as ℎ(𝑥) = 10 for 𝑥 > 1, or 𝛼 = 0.01, they will get
other results where a round number choice 𝑛 > 2 has the
best efficiency. However, those page distribution hypotheses
are not realistic. We have also provided the comparison in
the evaluation section, to show that two-round filtering is
proper for real-world applications.
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